skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Diaz, M. Vieites"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ Te V . The analysis uses a data sample corresponding to a total integrated luminosity of 138$$\,\text {fb}^{-1}$$ fb - 1 collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The$$\hbox {W}+\hbox {c}$$ W + c production cross section and the cross section ratio$$R_\textrm{c}^{\pm }= \sigma ({\hbox {W}}^{+}+\bar{\text {c}})/\sigma (\hbox {W}^{-}+{\textrm{c}})$$ R c ± = σ ( W + + c ¯ ) / σ ( W - + c ) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in$$R_\textrm{c}^{\pm }= 0.950 \pm 0.005\,\text {(stat)} \pm 0.010 \,\text {(syst)} $$ R c ± = 0.950 ± 0.005 (stat) ± 0.010 (syst) . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics. 
    more » « less
  2. Abstract A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton–proton collision data corresponding to an integrated luminosity of 16.1 $$\,\text {fb}^{-1}$$ fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 $$\,\text {GeV}$$ GeV are excluded and further sensitivity is explored towards higher masses. 
    more » « less
  3. null (Ed.)
    Abstract A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton–proton collision data at a center-of-mass energy of 13 $$\,\text {Te}\text {V}$$ Te , collected by the CMS experiment at the LHC in 2016–2018, corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1 . The search uses the decay channels $${\mathrm{Z}} \rightarrow {\mathrm{e}} {\mathrm{e}} $$ Z → e e and $${\mathrm{Z}} \rightarrow {{\upmu }{}{}} {{\upmu }{}{}} $$ Z → μ μ . No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions. 
    more » « less
  4. null (Ed.)